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1 describe a modification of the Barnes—Hut tree algorithm together with a series of numeri-
cal tests of this method. The basic idea is to improve the performance of the code on heavily
vector-oriented machines such as the Cyber 205 by exploiting the fact that nearby particies
tend to have very similar interaction lists. By building an interaction list good everywhere
within a cell containing a modest number of particles and reusing this interaction list for each
particie in the ceil in turn, the balance of computation can be shifted from recursive descen:
to force summation. Instead of vectorizing tree descent, this scheme simply avoids it in fzvor
of force summation. which is quite easy to vectorize. A welcome side-effect of this modification
is that the force calculation, which now treats a larger fraction of the local interactions
exactly. is significantly more accurate than the unmodified method. T 1990 Academic Press. Inc

1. INTRODUCTION

Hierarchical or “tree” methods of solving the gravitational N-body problem have
atiracted increasing attention in recent years [ 1-97. Tree methods are interesting
because they can handie arbitrarily complicated mass distributions with asympiotic
computing times of O{Nlog N) or even O(N) in terms of the particle nuraber W,
as opposed to O(N-°) for a direct summation code. The main application of
hierarchical methods is thus to problems involving very large N, say 10* or more,
where the advantage over older methods is greatest. In practice, this focus on
large-N problems means that tree codes must run well on vector-oriented super-
computers, since at present such machines offer the only large computing resource
available to most experimenters.

These factors have motivated several workers to consider implementing tree algo-
rithms on present-generation supercomputers, This problem is not trivial, because
the recursive flow of control required to descend the tree structure is at odds with
the lincar organization of vector processors. Vectorization of the Barnes and Hut
[4] tree algorithm has been approached in several different ways. To begin with,
Hernquist [7] noted that the force calculation on a particle p can be divided into
two phases: recursive tree descent, constructing an interaction {ist of all particles
and cells which interact with p, and force summation, which involves adding up all
the terms on the interaction list. Force summation is easily vectorized, delivering a
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significant speedup over an unvectorized code, but much scalar CPU time is still
spent descending the tree. A completely vectorized approach is described by
Makino [10]; vectorizing the tree search “across particles,” the algorithm performs
independent tree descents for many particles simultaneously. This elegant method
can be viewed as simulating a tree algorithm for a “fine-grained” parallel processor
such as the Connection Machine [11] on a conventional vector processor; in
practice, however, it requires hardware features such as indirect addressing not
uniformly available on all vector machines. Yet another approach has been
developed by Hernquist [12], vectorizing tree descent “level by level,” a procedure
which works well on a Cray.

A major regularity present in all hierarchical algorithms is that the representation
of the gravitational field used to calculate the force on particle p is very similar to
the representation used to compute the force on nearby particle ¢q. This regularity
is exploited in, for example, the fast multiple method (FMM) of Greengard and
Rokhlin [5], which constructs a multiple expansion of the field due to the mass
external to some chosen cell, and then uses this expansion to evaluate the external
force on each particle within the cell. The expense of constructing the field
expansion is thus shared between the particles within the cell. Clearly, there is an
optimum number of particles per cell—too few, and the cost of the multipole
expansions dominates: too many, and the cost of evaluating the local field by direct
summation dominates. This optimum choice is briefly discussed in connection with
an adaptive version of the FMM [8].

The same sort of strategy can be used to get around the problem of vectorizing
the Barnes-Hut algorithm. If # is a node on the interaction list L, of p, and the dis-
tance between # and p is much greater than the distance between p and ¢, then
most likely ne L,. This leads to the suggestion that Hernquist’s two-phase [7]
method be modified to construct an interaction list L. guaranteed to satisfy the
usual Barnes-Hut tolerance condition //d < 8 everywhere within a small cell ¢, con-
taining p, ¢, and a few other particles. L, may then be (re)used to evaluate the force
on p, ¢, etc. in turn, effectively reducing the number of tree descents required by a
factor equal to the number of particles in ¢. Instead of vectorizing tree descent, this
“non-vectorization” amounts to avoiding, as much as possible, that part of the
calculation which is hard to vectorize. Details are presented in Section II

By necessity, the interaction list L, will generally contain more information than
the list L, for any particle p within ¢; if node neL,, then either n or its
descendants e L. As a consequence, the modified method should deliver somewhat
more accurate forces than the original Barnes-Hut algorithm. In fact, this improve-
ment is large enough to be important when comparing the modified method to
other versions of the Barnes-Hut algorithm. Section III presents tests of the
modified algorithm, including a stringent series of experiments demonstrating that
as the timestep Ar and force calculation tolerance @ are jointly refined, the trajec-
tories of individual particles converge to a definite limit. Timing tests presented in
Section IV show that the modified algorithm is significantly faster when run on a
vector processor.



i
Lt

s

MODIFIED TREE CODE
II. DESCRIPTIONS OF THE METHOD

Where an implementation op the Barnes—Hut algorithm would normally loop
over particles from 1 to N and compute the force on sach in turn, the modified
algorithm must loop over the members of a selected set of cells C, constructing an
interaction list for each cell ¢ in C and using it to compute forces on all particles
within ¢. {n the present implementation, a cell ¢ is in C if it encloses a total of 7.,
or fewer particles and its parent cell encloses more than n,,, particles. Thus the se:
C covers the entire simulation volume without overlap, partitioning it into csils
containing at most n,., particles each; moreover, { is the smallest set with these
properties.

The sequence-force-calculation routine does a depth-first recursive descent of *he
iree structure, starting at the tree-root. When it finds a cell enclosing a-critical or
fewer particles, it constructs an interaction list good everywhere within that cell and
invokes perform-force-calculation. In the SCHEME dialect of Lisp [137, thus
algorithm may be stated as follows:

(define tree-reot ...)
{define n-critical ...)
{define (sequence-force-calculation node)
{cond ({body? node)
{perform-force-calculation node (interaction-list nede tree-root));
{ < (particle-count node)} n-critical)

{perform-force-calculation node (interaction-list node tree-root}))
{else
{do (idesc (descendents node) (cdr desc)))
{{null? desc) { })
{sequence-force-calculation {car desc)))}})

The next routine, perform-force-calculation, continues the recursive descent, using
inter-fist to evaluate the force on each particle it comes to.

{define |perform-force-calculation node inter-list}
(cond ({body? node)
(set-force! node (sum-force node inter-list)))
(else
{do ((desc (descendents node) {cdr desc}))
{{null? dese) ( ))
(perform-force-calculation (car desc) inter-list)))})

Here sum-force is a vectorized force summation routine which hides details of he
force calculation, including evaluation of the quadrupole contribution and a sorrec-
tion for self-interaction.

The interaction-list function walks the tree structure and constructs a Hst of
particles and cells obeying the Barnes-Hut opening-angle criterion with respect tc
any point within node.
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F1G. 1. The cooked-distance is the distance d from the center of mass (O) of cell ¢ the nearest point
in node n.

(define (interaction-list node tree)
(cond ((must-subdivide? tree node)
(concat
(map (lambda (t) (interaction-list node t))
(descendents tree))))
(else
(list tree))))

Here the map function constructs a list of interaction lists for the descendents of
tree, which are then spliced together by the concat function.

The predicate must-subdivide? decides if interaction-list must examine the
descendents of tree to construct an interaction list valid everywhere within node.

(define theta ...}

(define (must-subdivide? tree node)
(and (cell? tree)
(> (diameter tree)
(* theta
(cooked-distance (cm-position tree)
(centroid node)
(diameter-node))))))

This test is very similar to the standard Barnes—Hut algorithm, except that the
minimum distance cooked-distance between the center of mass of tree and any point
within node is computed; see Fig. 1.

ITI. NUMERICAL TESTS
To establish the reliability of the modified tree algorithm, I ran an extensive

series of test calculations. It seemed crucial to check the code on a reasonably
realistic problem, such as the head-on collision and merger of two spherical
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“galaxies” used here. There are, however, no known analytic solutions with which
to compare such calculations, so the validity of the numerical models had to e
tested by showing that. as sources of error were reduced, the results converged tc
a well-defined limit. This in itself does not prove the limit is the right one. but by
appealing to the existence and uniqueness of solutions of ODEs. a good case can
be made for the correctness of the N-body calculations.

The tests presented here employed a head-on, parabolic encounter between two
W, =5 King [14] models. Units were chosen so that G=1 and each galaxy had
g totat mass and three-dimensional rms velocity dispersion of unity. A total of
N =4096 particles were used, gravitational potentials were softened by the usuval
(r*+¢%)7 ' 2 form with £ =0.025, and the equations of motion were integrated with
a time-centered leap-frog. The galaxies were released 2 length units apart and given
velocities consistent with falling together from ov. The evolution of the system is
shown in Fig. 2. The galaxies passed through each other at ¢t~ 1 time unit and
separated by ~ 1.5 length units before falling back together and finally merging at
¢t =~ 4. On the whoie, the results of these simulations are quite consistent with earlier
head-on merger calculations [157.

{a) Convergence in the At, 0 Plane

For the first test, a series of models were run varying the force accuracy anc
integration timestep but fixing all other parameters. After some preliminarry
experimentation, the maximum number of particles sharing an interaction list was
set to n;, = 64. This gave a speedup of ~3 over an unmodified Barnes-Hut code
when compared on a Cyber 205; a similar improvement was obtained on a
Cray XMP. The parameter grid is shown in Fig. 3. Since all runs started from
exactly the same initial data, their evolution could be compared on a particle-by-
particle basis. Let r,(r; a) and r;(z: b) be the position vectors of particle 7 at time ¢
in simulations a and b, respectively. At first, r,(0; a}=r,(C; ), but the trajectories
will subsequently diverge due to differences in force calculation and/or integrazion,
The numbers tabulated between the runs are medians of dr, = |r,{r; a)—1 (5 bi.
evaluated at =4, Since the distribution of Ar, does not possess, for example, an
urusualiy long tail, the median is a good indication of the overall difference
between simulations. Further discussion of the Ar; distribution is postponed pend-
ing a more complete investigation.

Examining Fig. 3, it is clear that as the force caiculation and time integration are
jointly refined, the calculated trajectories do indeed converge 1o a definite imit
This is a reassuring if not unexpected result; one would scarcely believe a simula-
tion of a collisionless system which did not pass this kind of test, It is, however,
gratifying to note that the errors due to these two parameters appear to be largely
independent of each other; the overall improvement on refining 47 does not depend
on the value of 8, and vice versa.

It is also interesting if not surprising that for a given value of 6, the modified
algorithm appears to be significantly more accurate than the original Barnes-Hut
aigorithm [97. This increased accuracy comes at a price, of course: the more par-
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Fi16. 2. Head-on collision and merger of two spherical galaxies; elapsed time in model units is shown
at the upper right of each frame.
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Fi6. 3. Grid of models in timestep vs force calculation accuracy plane. all started from the same
initial conditions; each do: represents a calculation. The numbers plotted between models are median
distances of corresponding particles after 1 =4 time units. The left-most colump of runs was made
without quadrupole corrections: all others included them.

ticles sharing the interaction list, the longer the list. and hence the more time spen
in vectorized force summations. To attain a given level of force calculation
accuracy. 1s it better to reduce 6 or increase n;, 7 This question motivated the nexi
set of tests.

{by Convergence in the 9, n,,, Plane

in the second test 6 and n.,, were varied, while all other parameters were fixed.
with a timestep 47=1/80. The resulting grid is shown in Fig. 4, including datz from
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FiG. 4 Grid of models in ., vs # plane, all started from the same initial conditions. each dot
represents a calculation. The numbers plotted between models are median distances of corresponding
particles after ¢ = 4 time units. The top row of runs was made with the standard Barnes-Hut aigorithm;
all other runs were made using the modified algorithm.
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the standard Barnes-Hut algorithm [9] along the top. The pattern of median 4r,
values shows that as either § - 0 or n.; — N, the modified algorithm converges on
a definite answer. This is expected since, in either limit, the modified algorithm
reverts to an exact, O(N?) scheme.

Before comparing the accuracy of the old and new methods, the character of
remaining errors must be considered. Much of the error removed by the modified
algorithm was presumably contributed by nearby cells, which typically contain only
a few particles each, and therefore tend to have large statistical octopole and higher
moments. On the other hand, the effect of reducing 6 is to sample the mass distribu-
tion more finely on all scales. Thus, although 6 — 0 and ., — N both approach the
same limit, they nevertheless do so from somewhat different “directions.” In other
words, the distributions of remaining errors are different; the modified algorithm is
more faithful locally. With this point noted, the modified algorithm working at
6 =20, and n_; = 64 appears comparable in accuracy to the Barnes-Hut algorithm
working at #=0.78,, as inferred from the median Ar, values.

IV. TIMING RESULTS

How much faster is the modified algorithm? Unlike the questions of accuracy
considered above, this one cannot be answered without reference to the machine
running the code. To obtain any real advantage from this scheme, the vector perfor-
mance of the hardware must significantly exceed the scalar performance; only then
will the speedup from the force summation phase significantly outweigh the cost of
the more complicated tree-search and the generally longer interaction lists. In
general, this is just the balance of performance offered by conventional array
processor and supercomputer systems.

Table I shows force-calculation timings on a Sun 3/60 and Cyber 205 as a
function of & and n,,. For comparison, timings of the Barnes—Hut algorithm are
also listed—these are for a version of the code including Hernquist’s partial vec-

TABLE I

CPU Timings in Seconds as a Function of 8 (Over) and n;, (Down)
for a Sun 3/60 and Cyber 205, Measured Using
a Plummer Model with ¥ = 8192 Particles

Sun Cyber
1.0 0.7 0.5 1.0 0.7 0.5
1¢ 1155 2089 3698 18.9 339 60.3
16 1562 2635 4483 11.1 16.5 26.7
64 1885 2832 4805 8.4 11.1 17.1
256 2212 3096 5175 8.1 10.2 15.3

% Standard BH algorithm.
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torization [7,9]. These times are measured in seconds using a spherical Plummer
model with N = 8192 particles. Tests with 2048 < N < 16384 particles are consistent
with O(N log N) scaling. On a scalar processor such as the Sun 3/60, the modified
algerithm is slower than the original method, because the time saved in the tree-
descent is less than the time lost evaluating the longer interaction lists. Cn the
Cyber 205, on the other hand, the modified algorithm is between Z and 3 times
faster than Barnes—Hut algorithm for a given value of 4, with the greatest speedup
found for small £. This speedup is not very sensitive to #,, :n the range studied.
although for much larger n_,, the speedup will be fost as the O{N?) limit is reachsd.
When the increased accuracy of the modified method is taken nto account, the
effective speedup is a factor of 3 to 3.

Analysis of the modified algorithm at a level of detail sufficient to predict these
fiming results is extremely difficult, since the statistical properties of the mass
distribution {9] and the performance of the computer hardware are both involved.
A simpie argument, however, can give the overall behavior. The CPU time required
o evaluate the force on all N particles using the original Barnes—Hut algorithin is

T=N(T, + T

where 7, is the average time required to construct an interaction Iist for one
particle, and T, is the average time to sum the total force on one particle, given the
interaction list. Both T, and T, are (roughly) proportional to the iength of a
typical interaction list, which is O(log N), giving 7 = N log N asymptoticaliy {41,
The CPU time for the modified algorithm is

T' =N, T, +NT,.

where IV, is the number of interaction lists constructed, T, is the average time o
construct an interaction list for a cell, and 77 is the average time to sum the foree
on a particie. Introducing the average number of particles handled per interaction
list, 7= N/N, <n,, gives

T'=N(T./i+T))

for the modified algorithm. Hence if T} > Ty, as is the case on the Cyber 205, the
modified algorithm can be faster than the original. As n_,, is increased, the number
of interaction lists N, is reduced, but the length of each interaction list increases,
and hence so do T; and T7. The optimum value of n,, depends on the ratic of
scalar to vector performance but is, in the large & limit, independent of N itself

V. CONCLUSIONS

Empirical tests show that the modified tree code performs well on a vector-
oriented machine such as a Cyber 205. For a given 6, the typical gain over
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Hernquist’s two-phase formulation is somewhat smaller than the gain offered by the
vectorization methods discussed in [10, 127]. However, for a given level of error,
quantified by measuring particle displacements at the end of the calculation, the
modified method permits a somewhat larger value of 0. In terms of overall
throughput, therefore, the modified method is not at a disadvantage compared to
other vectorization schemes. The primary advantages of the modified method are
portability and simplicity. On the software level, the code is written entirely in
standard F77, with no “vector” extensions or special library calls. On the hardware
level, the code demands only efficient processing of longish vectors; hardware
gather/scatter and conditional operations are not needed. The modified method is
only slightly more complicated than the original Barnes-Hut algorithm; it took less
than three hours and one hundred additional lines of code to implement.
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